a2 United States Patent

Lim et al.

US009183047B2

US 9,183,047 B2
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CLASSIFYING REQUESTED APPLICATION
BASED ON PROCESSING AND RESPONSE
TIME AND SCHEDULING THREADS OF THE
REQUESTED APPLICATION ACCORDING TO
A PRESET GROUP

(75) Inventors: Geun Sik Lim, Gyeonggi-do (KR);

Sang Bum Suh, Seoul (KR); Hyun Jin
Choi, Seoul (KR)

(73)

")

Assignee: Samsung Electronics Co., Ltd. (KR)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 513 days.

@
(22)

Appl. No.: 13/469,648

Filed: May 11, 2012

(65) Prior Publication Data

US 2013/0042250 A1 Feb. 14,2013

Related U.S. Application Data

Provisional application No. 61/485,865, filed on May
13, 2011, provisional application No. 61/485,873,
filed on May 13, 2011.

(60)

(30) Foreign Application Priority Data

Oct. 11,2011 (KR) wecccvvevrrrrrreree 10-2011-0103358

(51) Int.CL
GOGF 9/48
GOGF 9/46
GOGF 9/44
GOGF 9/50

USS. CL
CPC oo GOGF 9/4881 (2013.01); GOGF 9/44
(2013.01); GO6F 9/46 (2013.01); GO6F 9/48
(2013.01); GO6F 9/5005 (2013.01)

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,058,033 A * 10/1991 Bonissoneetal. 706/52
5,428,789 A * 6/1995 Waldron, IIT 718/103
6,263,359 B1* 7/2001 Fongetal. 718/103
6,668,269 B1* 12/2003 Kamadaetal. 718/103
6,757,897 B1* 6/2004 Shietal. 718/102
7,058,949 B1* 6/2006 Willenetal. 718/104
7451,447 B1* 11/2008 Deshpande 718/102
7,707,578 B1* 4/2010 Zedlewski et al. ... 718/102
7,752,622 B1* 7/2010 Markov 718/103
8,438,572 B2* 5/2013 Fecioru 718/103
2003/0037091 Al* 2/2003 Nishimuraetal. 709/103
2003/0236815 Al* 12/2003 Brenneretal. 709/104
2004/0015971 Al* 1/2004 Spoltore et al. 718/102
2004/0088704 Al* 5/2004 Owencetal. 718/100
2005/0108717 Al* 5/2005 Hongetal.cccceeene. 718/102
(Continued)

FOREIGN PATENT DOCUMENTS

JP 2010165209 7/2010

Primary Examiner — Emerson Puente
Assistant Examiner — Benjamin Wu
(74) Attorney, Agent, or Firm — The Farrell Law Firm, P.C.

(57) ABSTRACT

A method and apparatus for improving application process-
ing speed in a digital device which improve application pro-
cessing speed for a digital device running in an embedded
environment where processor performance may not be suffi-
ciently powerful by detecting an execution request for an
application, identifying a group to which the requested appli-
cation belongs, among preset groups with different priorities
and scheduling the requested application according to the
priority assigned to the identified group, and executing the
requested application based on the scheduling result.

18 Claims, 6 Drawing Sheets

DETECT EXECUTION REQUEST
FOR APPLICATION

301

305

ASSIGNED GROUP?

ASSIGN APPLICATION TO GROUP

Yes
—

| GIVE PRIORITY OF GROUP TO APPLICATION |«/ 307

EXECUTE APPLICATION ACCORDING

~—309

TO GIVEN PRIORITY

US 9,183,047 B2

Page 2
(56) References Cited 2008/0235697 Al* 9/2008 Kobayashi 718/103
2009/0172686 Al* 7/2009 Chen et al. .. 718/103
U.S. PATENT DOCUMENTS 2010/0017447 Al1* 1/2010 Jones et al. 707/206
2010/0271725 Al* 10/2010 Kim ...cccoovvivviiiiiinnnns 360/31
2006/0190482 Al* 82006 Kishanetal. 707/103Y 2012/0023500 Al* 1/2012 Karstens 718/103
2007/0083871 Al* 4/2007 McKenney 718/105 2012/0047509 Al* 2/2012 Ben-Itzhak .. 718/103
2007/0118838 Al* 5/2007 Tsujino etal. 718/103 2012/0198461 Al* 82012 Saxeetal. . .. 718/103
2007/0198768 Al* 82007 Kimetal. ... o 711/103 2012/0311592 A1* 12/2012 Kim ..oooooovviirceieien, 718/102
2007/0300230 Al* 12/2007 Barsness et al. ... 718/103
2008/0133608 Al* 6/2008 Brownetal. 707/200 * cited by examiner

U.S. Patent Nov. 10, 2015 Sheet 1 of 6 US 9,183,047 B2

FIG. 1
100
1 350
DISPLAY UNIT
4
Y o T
WIREESS CONNURCATON | _ CONTROL UNT STORAGE UNT
1M1 GROUPING UNIT GROUP TABLE }1_ 121
M2 SCHEDULER
HASH TABLE 4 _ 122
1131 PROCESSOR

[} 4

P

140 ~ INPUT UNIT AUDIO PROCESSING UNIT }~_ 160
/1IN ZB

SPK MIC

US 9,183,047 B2

Sheet 2 of 6

Nov. 10, 2015

U.S. Patent

E%En_
(-
gLl N =4 il
1I9NPaydS L
LIl
m lajsueli Lpoolanig RJaWe) Jajsuel) 849 B9.1S 793dIN fuoydsys
anoJo %sey aipl anoJy yse] punoibyaey anoJo yse] 99InIAS anoJy ysey [BULION anoJy yse] UabIn
1=A1101d 0l=Aiold |- =A1I01id 01- =Aold 61- =AI0Ld
1aBeUey g YiOmaueH g 19BBUBH g
yS81 3[D| 9911138 fuoydalal
ananp ananp ananp ananp ananp
1B UDI93S pieq UoNaag B1ed UONIAS 1B UOI}29S pie[UoNIas
Bulnpayas Bulinpayas Bulinpayas Bunnpayas Bulinpayas
1011993 IIREIN 1013998 LN IDREI
BLISSa2014 | {BUISSAI0I4 BUISS90.d | {BUISSAI0I4 BLISSan0.4 | {BUISSAI0 N4 BUISSan01d | (6LISSaa014 BUISSa014 | |BUISSAI0 L4
wwo? || yiooianig aimdeq || elawen dep adn opny 03pIA auoydajal || ompny

SpeaJyl adeds-1as

SpeaJul aoeds-1as

SpeaJy) aoeds-1asn

SPeaJy] aoeds-13sn

SpeaJy) adeds-1as

oL

¢ IId

U.S. Patent Nov. 10, 2015 Sheet 3 of 6 US 9,183,047 B2

FIG. 3

DETECT EXECUTION REQUEST
FOR APPLICATION

~— 301

ASSIGNED GROUP?
305

‘ YES
ASSIGN APPLICATION TO GROUP -

Y

GIVE PRIORITY OF GROUP TO APPLICATION |~ 307

1
EXECUTE APPLICATION ACCORDING
TO GIVEN PRIORITY

~—309

U.S. Patent Nov. 10, 2015 Sheet 4 of 6 US 9,183,047 B2
FIG. 4
/305
START
DETECT REQUEST FOR GROUP ASSIGNMENT | 401
!
IDENTIFY SCHEDULING ATTRIBUTE
OF APPLICATION ~—A402
103
NO

SCHEDULING ATTRIBUTE

IS SET?
409
L

ASSIGN APPLICATION TO ONE OF PRESET
GROUPS ACCORDING TO PRESET RULE

A

ASSIGN APPLICATION TO DEFAULT GROUP

~ 407

U.S. Patent Nov. 10, 2015

Sheet 5 of 6 US 9,183,047 B2

FIG. 5

DETECT EXECUTION REQUEST
FOR USER APPLICATION

~— 001

OTHER APPLICATIONS
ARE IN EXECUTION 2

509
L

003
NO

CHANGE PRIORITIES OF OTHER
APPLICATIONS

! ~

507

OF CHANGED PRIORITIES

PERFORM SCHEDULING ON THE BASIS ,

013
L

\

EXECUTE USER APPLICATION

008

AND OTHER APPLICATIONS

CONTROL EXECUTION OF USER APPLICATION

)

EXECUTION OF
USER APPLICATION
COMPLETED 9

' 009

ol

RESTORE ORIGINAL PRIORITIES
OF OTHER APPLICATIONS

Y

END

US 9,183,047 B2

Sheet 6 of 6

Nov. 10, 2015

U.S. Patent

7 g Z |
V] V P V] w P
(066L=) PIBY (066L=] DI} (066L=) PIB} (066L=) DI}
T (e66£=) pid (z661=] il (166L=) pid [065.=) pid
oud (8=) oud oud old
JONIS YSE) JINIS YSe) JONISiSE) JaNISSE] EITE)
.n QidM1 Su uinjal A
fiiiold s,peaiyy 1snipe v DUIE Pealij} Mall 912310 v
(JANI01ICNBSTSAS I (")3UO0[9~SAS Jul
ket ____
QldM1186 ‘PR Lasu
P [QIdMTPN] ,,_ A
(pomy Japoudies | \ ‘Prpeaiyrmau=g-
{ pI} JU0JBasY = pidM| ¢-1ouop = papyo | 1dN + 01D
‘Dl 17pid —> < o
) i - 9980g
(o1ld ‘d ‘pRjwe.edpaydsias—pea.uid _...d.,”_ umm‘_EEmumm._u umm‘EE
9/qei USeH
oy T vy 3 IEN]|
DOEHO48X0
. _ \ _ ‘aay
{ o1d 'd ‘pnjwetedpaydsiaspeaiuid \ ™ ‘pnyjaiealdpealyld
[OldM1 [3uIaY
+ (1L J3S + 01 Jasn |
a[fleL USeH
9 "DId

US 9,183,047 B2

1
CLASSIFYING REQUESTED APPLICATION
BASED ON PROCESSING AND RESPONSE
TIME AND SCHEDULING THREADS OF THE
REQUESTED APPLICATION ACCORDING TO
A PRESET GROUP

PRIORITY

This application claims priority under 35 U.S.C. §119(e) to
U.S. Provisional Applications filed on May 13, 2011 in the
United States Patent and Trademark Office and assigned Ser.
Nos. 61/485,873 and 61/485,865, and under 35 U.S.C. §119
(a) to a Korean patent application filed on Oct. 11, 2011 in the
Korean Intellectual Property Office and assigned Serial No.
10-2011-0103358, the entire disclosures of each of which are
incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to improvement of
application processing speed and, more particularly, to a
method and apparatus that can improve application process-
ing speed for a digital device running in an embedded envi-
ronment where processor performance may be not suffi-
ciently powerful.

2. Description of the Related Art

Due to advances in processor and memory technologies,
modern digital devices are capable of executing various appli-
cations in addition to applications initially installed by manu-
facturers. Such a digital device may execute multiple appli-
cations at the same time.

In a typical digital device, when multiple applications are
simultaneously executed, the processor is allocated to the
multiple applications in the same proportion. Hence, in a state
in which multiple applications are executed, when the user
makes an execution request for an additional application, it
may take a long time to execute the additional application
because the digital device is unable to sufficiently allocate the
processor resources to the additional application. This may
cause user dissatisfaction with performance of the digital
device.

In a digital device having many installed applications,
when multiple applications are executed in the background,
processing speed of a user requested application can become
slower if the processor is not sufficiently powerful. Hence, it
is necessary to develop a means for shortening the application
execution time in a digital device operating in an embedded
environment lacking physical processing resources.

SUMMARY OF THE INVENTION

Accordingly, the present invention has been made to solve
the above mentioned problems and the present invention pro-
vides a method and apparatus that can improve application
processing speed by shortening latency in application execu-
tion for a digital device running in an embedded environment
where physical processing resources are not sufficient.

According to an aspect of the present invention, there is
provided a method and apparatus for improving application
processing speed in a digital device wherein applications are
classified into multiple groups according to their importance
in terms of processing time and response time and different
scheduling priorities are applied to the individual groups.

According to an aspect of the present invention, there is
further provided a method and apparatus for improving appli-
cation processing speed in a digital device wherein priorities

10

15

20

25

30

35

40

45

50

55

60

65

2

of a user requested application and other applications in
execution are dynamically adjusted so that the user requested
application is executed first with a reduced latency time.

According to an embodiment of the present invention,
there is provided a method for improving application process-
ing speed in a digital device, including detecting an execution
request for an application; identifying a group to which the
requested application belongs, among preset groups with dif-
ferent priorities; and scheduling the requested application
according to the priority assigned to the identified group, and
executing the requested application based on the scheduling
result.

According to another embodiment of the present invention,
there is provided a method for improving application process-
ing speed in a digital device, including checking, upon detec-
tion of an execution request for a user application, whether
other applications are being executed; changing, when other
applications are being executed, priorities of the other appli-
cations being executed so that the user application is executed
first, and performing scheduling according to the changed
priorities; and executing the user application and the other
applications based on the scheduling result.

According to another embodiment of the present invention,
there is provided an apparatus for improving application pro-
cessing speed in a digital device, including a grouping unit
identifying, upon detection of an execution request for an
application, a group to which the requested application
belongs, among preset groups with different priorities; a
scheduler scheduling the requested application according to
the priority assigned to the identified group; and a processor
executing the requested application based on the scheduling
result produced by the scheduler.

According to another embodiment of the present invention,
there is provided an apparatus for improving application pro-
cessing speed in a digital device, including an input unit
generating an execution request for a user application; and a
control unit controlling a process of checking, upon detection
of an execution request for a user application from the input
unit, whether other applications are being executed, chang-
ing, when other applications are being executed, priorities of
the other applications being executed so that the user appli-
cation is executed first, performing scheduling according to
the changed priorities, and executing the user application and
the other applications based on the scheduling result.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features and advantages of the
present invention will be more apparent from the following
detailed description taken in conjunction with the accompa-
nying drawings, in which:

FIG. 1 is a block diagram illustrating a digital device
according to an embodiment of the present invention;

FIG. 2 is a diagram illustrating interactions between inter-
nal components of a control unit in the digital device;

FIG. 3 is a flowchart illustrating a method for improving
application processing speed according to another embodi-
ment of the present invention;

FIG. 4 is a flowchart illustrating a step for application-to-
group assignment in the method illustrated in FIG. 3;

FIG. 5 is a flowchart illustrating a method for improving
application processing speed according to another embodi-
ment of the present invention; and

FIG. 6 is a diagram illustrating a scheme for changing
priorities of applications.

US 9,183,047 B2

3

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE PRESENT INVENTION

Hereinafter, various embodiments of the present invention
are described in detail with reference to the accompanying
drawings. The same reference symbols are used throughout
the drawings to refer to the same or like parts. Detailed
descriptions of well-known functions and structures may be
omitted to avoid obscuring the subject matter of the present
invention. Various changes and modifications may be made to
the embodiments of the present invention without departing
from the scope of the invention.

In the following description, a “digital device” refers to a
device having embedded system constraints, such as a Per-
sonal Digital Assistant (PDA), mobile communication termi-
nal, smartphone, tablet computer, smart TV, camera and the
like.

The present invention relates to shortening latency of
application execution in an embedded system environment
where processor performance is not powerful by giving pri-
ority to threads requiring a high percentage of processor time.
According to an embodiment, to determine which application
is to be scheduled first in a state in which available processor
time is insufficient, applications are classified into multiple
groups according to their scheduling attributes and properties
and different priorities are assigned to the individual groups.
According to an embodiment, when the user makes an execu-
tion request for a specific application while other applications
are being executed, application priorities may be changed so
that the user requested application is executed first. For
example, execution of the other applications may be stopped
and the user requested application is executed first, or priori-
ties of the other applications being executed are lowered,
thereby increasing the percentage of processor time allocated
to the user requested application.

FIG. 1is a block diagram of a digital device 100 according
to an embodiment of the present invention, and FIG. 2 illus-
trates interactions between internal components of a control
unit 110 in the digital device 100.

Referring to FIGS. 1 and 2, the digital device 100 includes
a control unit 110, a storage unit 120, a display unit 130, an
input unit 140, a wireless communication unit 150, and an
audio processing unit 160.

The audio processing unit 160 performs encoding and
decoding of an audio signal, and may include a codec (coder/
decoder) and an audio amplifier. The audio processing unit
160 is connected to a Microphone (MIC) and a Speaker
(SPK). The audio processing unit 160 converts an analog
voice signal from the microphone into a digital voice signal
and forward the digital voice signal to the control unit 110,
and converts a digital voice signal from the control unit 110
into an analog voice signal and output the analog voice signal
to the speaker. The audio processing unit 160 outputs various
audio signals generated by the digital device 100 (audio sig-
nals generated by playback of MP3 files and moving image
files) to the speaker. The audio processing unit 160 also out-
puts various audio signals generated by applications being
executed.

The wireless communication unit 150 establishes a com-
munication channel with a base station for a voice call, a data
call and a video call. Under control of the control unit 110, the
wireless communication unit 150 sends and receives a voice
signal or a video signal to and from a corresponding terminal.

The wireless communication unit 150 includes a radio
frequency transmitter (not shown) for upconverting the fre-
quency of a signal to be transmitted and amplitying the signal,
a radio frequency receiver (not shown) for low-noise ampli-

10

15

20

25

30

35

40

45

50

55

60

65

4

fying a received signal and downconverting the frequency of
the received signal, and a duplexer (not shown) for separating
a transmit signal from a receive signal. If the digital device
100 does not support wireless communication, the wireless
communication unit 150 may be excluded.

The display unit 130 displays various menus of the digital
device 100, information input by the user, and information
provided to the user. For example, the display unit 130 dis-
plays various screens such as an idle screen having multiple
application icons, a message handling screen, a menu screen,
amessage composition screen and a call handling screen. The
display unit 130 may be implemented using Liquid Crystal
Display (LCD) devices, Organic Light Emitting Diodes
(OLED), or Active Matrix Organic Light Emitting Diodes
(AMOLED). When the display unit 130 has a touchscreen
functionality, it acts as an input means.

The input unit 140 includes a plurality of alphanumeric and
function keys for inputting alphanumeric information and for
setting various functions of the digital device 100. The input
unit 140 sends input signals for requesting and controlling
application execution to the control unit 110. The input unit
140 may be implemented using at least one of a keypad of
buttons, a ball joystick, an optical joystick, a wheel key, a
touch key, a touch pad, a touch screen and a combination
thereof.

The storage unit 120 stores programs and user data for
realizing functions of the digital device 100. For example, the
storage unit 120 stores an Operating System (OS) for booting
and operating the digital device 100, and other application
programs related to images, sounds and short-range wireless
communication to support optional functions of the digital
device 100. When the display unit 130 has a touchscreen
functionality, the storage unit 120 stores key maps and menu
maps for proper display operation. The key maps may corre-
spond to various keyboard layouts including 3 by 4 and
Qwerty layouts, and may include a control key map for con-
trolling execution of an application program. The menu maps
includes a menu map for controlling execution of an applica-
tion. The storage unit 120 stores a group table 121 and a hash
table 122.

The group table 121 stores classification results of appli-
cations according to their importance in terms of processing
time and response time. When applications are composed of
multiple processes or threads, classification can be made on a
process or thread basis. In the present invention, applications
are classified into groups of “urgent tasks,” “normal tasks,”
“service tasks,” “background tasks” and “idle tasks.” In the
following description, entries of each group are assumed to be
threads for illustration purposes.

An “urgent task” is a thread that is interacting with the user
through the topmost screen on the display unit 130 or is
currently utilizing the processor 113. A thread in the urgent
task group needs immediate processing and may be used to
immediately handle user interface activities.

A “normal task” is a thread that is related to the current
display operation on the display unit 130 but does not need
immediate processing. A thread in the normal task group is
maintained in an executable state until termination.

A “service task” is a middleware level thread that supports
application functions and utilizes system services. A thread in
the service task group may be maintained in an executable
state to handle an application related function not directly
evident to the user as long as resources of the processor 113
are sufficient to process urgent tasks and normal tasks.

A “background task™ is a thread that is invisible to the user.
A thread in the background task group does not directly
impact a user application. Execution of a background task is

US 9,183,047 B2

5

terminated when an urgent task, a normal task or a service
task makes a usage request for the processor 113. Threads in
the background task group may be managed according to the
Least Recently Used (LRU) scheme (the most recently used
thread is terminated last as it tends to be used again).

An “idle task” is a thread that is unrelated to any compo-
nent of an activated application. A thread in the idle task
group is used to shorten the time to initiate a user requested
application. That is, an idle task may act as a cache.

The hash table 122 contains mappings between Thread IDs
(TIDs) in the user space and Light Weight Process IDs (LW-
PIDs) in the kernel space.

The control unit 110 controls the overall operation of the
digital device 100 and signal exchange between internal com-
ponents thereof, and perform data processing operations. The
control unit 110 controls a process of identifying, in response

10

15

6

scheduling so that applications with higher priorities can be
processed by the processor 113 first.

As illustrated in FIG. 2, when multiple applications are
requested for execution, the scheduler 112 performs sched-
uling so that those applications belonging to a group with a
high priority (the urgent task group or the normal task group)
can be processed first. In addition, when execution of a user
application is requested, the scheduler 112 performs sched-
uling according to changed priorities of the user application
or other applications.

The processor 113 executes applications according to a
schedule produced by the scheduler 112. The processor 113
sets the priority of a process or thread constituting an appli-
cation by means of system calls or library calls illustrated in
Table 1.

TABLE 1
Content Function name Call Linux Thread ~ NPTL

Normal Priority ~ Process setpriority() or nice() System getpid() gettid()
(=Regular) call
Range: -20~19 Thread setpriority() or nice() System

call
Real-time Priority Process sched_setscheduler() System
(=time-critical) sched_ setparam() call
Range: 1~99 Thread pthread_setschedparam() Library

call

to an execution request for an application, a group to which
the user requested application belongs, scheduling the appli-
cation according to the priority assigned to the group, and
executing the application based on the determined schedule.

When one or more other applications are being executed
when the execution request for the user requested application
is made, to process the user requested application first, the
control unit 110 changes (lowers) the priorities of the other
applications, performs scheduling according to the changed
priorities, and controls execution of the user requested appli-
cation and other applications accordingly. Here, the other
applications may have a priority greater than or equal to that
of'the user requested application. To achieve this, the control
unit 110 includes a grouping unit 111, a scheduler 112, and a
processor 113.

The grouping unit 111 identifies, in response to an execu-
tion request for an application, a group to which the user
requested application belongs. When the user requested
application is not yet assigned to a group, the grouping unit
111 adds the user requested application to one of the preset
task groups according to importance in terms of processing
time and response time.

When the scheduling attribute of an application is not set,
the application may be assigned to a default group; and when
the scheduling attribute of an application is set, the applica-
tion may be assigned to one of the preset task groups accord-
ing to a preset rule. When an application is composed of
multiple processes or threads, group assignment may be made
on a process or thread basis. An application may be assigned
to one group when the application is about to be executed, and
remain in the group until termination. Group classification or
group assignment is described in detail with reference to FIG.

The scheduler 112 adjusts the execution sequence of appli-
cations and assigns sequence numbers to executable tasks.
The scheduler 112 performs scheduling based on priorities
assigned to the groups. That is, the scheduler 112 performs

40

45

Referring to Table 1, the priority of a process or thread
being executed may be changed in a “normal priority” range
using a system call “setpriority” or “nice”; and the priority of
athread may be changed in a “real-time priority” range using
a library call “pthread_setschedparam.” Here, “normal prior-
ity” is also referred to as “dynamic priority.”

Threads having a priority in the “normal priority” range
may share the processor 113 in a time-sliced manner, and a
thread with a smaller “nice” value (set by the “nice” function)
may use the processor 113 for a longer time. The “real-time
priority” is used for a thread or process with a real-time
constraint. Real-time priorities are not generally used in the
user space, and may be used for “watchdog’ and “migration”
services in the kernel space. Priority change is described in
detail below.

Although not illustrated in FIG. 1, the digital device 100
may further include at least one of a camera module for
capturing still or moving images, a digital broadcast receiving
module for receiving digital broadcasts, a digital music player
like an MP3 module and a proximity sensor module for prox-
imity sensing. With the digital convergence trend, it should be
apparent to those skilled in the art that the digital device 100
may further include a unit comparable to the above-described
units, and one unit thereof may be removed or replaced with
another unit.

FIG. 3 is a flowchart of a method for improving application
processing speed in the digital device 100.

Referring to FIG. 3, the control unit 110 of the digital
device 100 detects an execution request for an application in
Step 301. Upon detection of an execution request for an
application, the control unit 110 identifies a group to which
the requested application is assigned in Step 303.

When the requested application is not yet assigned to a
group, the control unit 110 assigns the requested application
to one of the preset task groups in Step 305. Here, the control
unit 110 checks the scheduling attribute of the requested
application and assigns the requested application to one of the
preset task groups according to a preset rule. When the

US 9,183,047 B2

7

requested application is composed of multiple processes or
threads, group assignment may be made on a process or
thread basis. This is further described with reference to FIG.
4. After group assignment, the control unit 110 proceeds to
step 307.

When the requested application is already assigned to a
group, the control unit 110, the control unit 110 assigns the
priority of the group to the requested application in Step 307.
The control unit 110 performs scheduling of the requested
application according to the assigned priority and executes
the requested application according to the scheduling results
in Step 309. That is, the scheduler 112 performs priority-
based scheduling, and the processor 113 executes applica-
tions according to the scheduling results.

As described above, according to the present invention,
unlike in a method in which multiple applications requested
for execution are scheduled to have the same priority, an
application requested for execution is assigned to one of the
preset groups having different priorities according to the
scheduling attribute, is scheduled based on the priority of the
assigned group, and is executed according to the scheduling
results. Thatis, an application requiring rapid response time is
assigned to a group having a high priority, enabling efficient
execution management of the application.

FIG. 41is a detailed flowchart of a step for group assignment
in the method illustrated in FIG. 3.

Referring to FIG. 4, the grouping unit 111 of the control
unit 110 detects a request for group assignment in Step 401. A
request for group assignment may be made when an applica-
tion is executed for the first time.

The grouping unit 111 identifies the scheduling attribute of
the requested application in Step 402, and checks whether the
scheduling attribute is set in Step 403. When the scheduling
attribute is set, the grouping unit 111 assigns the requested
application to one of the preset task groups according to a
preset rule in Step 409. Here, the grouping unit 111 may
assign the application to a group in consideration of proper-
ties thereof such as processing time and response time.

When the scheduling attribute is not set, the grouping unit
111 assigns the application to the default group in Step 407. In
the event that the application is composed of multiple pro-
cesses or threads, group assignment may be made on a pro-
cess or thread basis.

After group assignment, the application may remain in the
assigned group until termination. This is because frequent
group reassignment or permanent storage of the reassignment
results may be an inefficient use of resources.

FIG. 5 is a flowchart of a method for improving application
processing speed in the digital device 100.

Referring to FIG. 5, the control unit 110 detects an execu-
tionrequest for auser application in Step 501. Upon detection
of an execution request, the control unit 110 checks whether
other applications are being executed in Step 503. Here, the
user application may be an application that is requested for
execution from the user using a graphical user interface on the
input unit 140 or the touchscreen (not shown), and the other
applications may be applications that are in competition with
the user application. The other applications may have a pri-
ority greater than or equal to that of the user application.

When no other applications are being executed, the control
unit 110 executes the user application in Step 513. When
other applications are being executed, the control unit 110
lowers priorities of the other applications being executed in
Step 505, and performs scheduling based on changed priori-
ties in Step 507. In the present invention, the
“pthread_setschedparam” function in the Native POSIX
Thread Library (NPTL), a common library function working

10

15

20

25

30

35

40

45

50

55

60

65

8

in the user space, may be utilized to change priorities. This is
further described with reference to FIGS. 6 and 7.

Based on the scheduling results, the control unit 110 con-
trols execution of the user application and the other applica-
tions in Step 508. As described above, as priorities of the other
applications are lowered, the user application may utilize the
processor 113 for a longer time. Hence, the processing speed
of the user application can be improved.

The control unit 110 checks whether execution of the user
application is completed in Step 509. When execution of the
user application is completed, the control unit 110 restores the
original priorities of the other applications in Step 511.

Inthe above description, priorities of the other applications
are lowered. Alternatively, the control unit 110 may raise the
priority of the user application, or may suspend execution of
the other applications until execution of the user application is
completed.

When an application has a priority greater than or equal to
a preset threshold, the control unit 110 may not change the
priority of the application. For example, when an application
belongs to the urgent task group (such as an application for
handling reception of a call request), the control unit 110 may
not lower the priority of the application.

In the method illustrated in FIG. 5, when the user activates
a user application, priorities of existing applications being
executed are adjusted or the priority of the user application is
adjusted so as to shorten processing time of the user applica-
tion. This is because the user wishes to quickly view results of
the activated application.

FIG. 6 illustrates a scheme for changing priorities of appli-
cations.

Among many scheduling policies for embedded environ-
ments with real-time constraints, while the Round Robin
Scheduling Policy (SCHED_RR) is considered ideal, the
First-In-First-Out scheduling policy (SCHED_FIFO) is pre-
ferred for reasons of efficiency and simplicity.

In the present invention, the pthread_setschedparam func-
tion in the NPTL based on Linux Kernel 2.6 is enhanced in a
manner conforming to the Portable Operating System Inter-
face (POSIX) standard. To shorten processing time of a user
requested application, the enhanced pthread_setschedparam
function can be used to adjust the scheduling priority of the
user requested application (or scheduling priorities of pro-
cesses or threads constituting the user requested application)
to be adjusted or to change “normal priorities” of other exist-
ing applications in runtime. Here, the enhancement should be
carried out so that existing threaded applications are reusable
without source code modification. In addition, different pri-
orities should be assignable to multiple threads created within
one process while compatibility between interfaces of NPTL
thread functions and the POSIX standard is maintained.

Table 2 illustrates a pseudo code for an NPTL function that
can dynamically adjust the scheduling priority of a “normal
priority” thread. However, the present invention is not limited
to or by such a pseudo code, and may be implemented in
various ways.

TABLE 2

int _pthread_ setschedparam(threadid, policy, param)
pthread_ t threadid;
int policy;
const struct sched__param *param;
/*To support priority, if used SCHED_ FIFO or SCHED_ RR, display
caution message
*(@/usr/include/linux/sched.h)
/*Default Value is normal*/

US 9,183,047 B2

9
TABLE 2-continued

10
TABLE 3-continued

structp thread *pd = (struct pthread *) threadid;
if (policy == SCHED__ OTHER)

/*The scheduling priority of the process. */

int which = PRIO_ PROCESS;

/*Handling of SCHED__ OTHER priority that user assigned */

if (param->sched_ priority < -20 && param->sched_ priority > 19)

printf(“ERROR! Range
\r\n”);
return errno;

of priority that you can input is —20~19

/*Getting LWP(thread id in the kernel) to change priority about assigned
thread id. */
if (setpriority(which, unique_ kernel tid(), param->sched_ priority))
{

perror (“setpriority() is ERROR. It seems that System not
support setpriority()\n”);

result = errno;
¥

When the pseudo code of Table 2 is implemented, the
“pthread_setschedparam” function may be invoked as illus-
trated FIG. 6. More specifically, after a requested thread is
created using the “pthread_create” function, the processor
113 of the control unit 110 refers to the hash table 122 to find
a thread ID (LWPID) in the kernel space corresponding to a
thread ID (TID) in the user space. Here, the hash table 122
contains information on mappings between thread IDs in the
user space and thread IDs in the kernel space.

Thereafter, the processor 113 invokes the “setpriority”
function using the found thread ID (LWPID) in the kernel
space. Then, the “setpriority” function invokes a system call
working in the kernel space to adjust the priority of the thread
corresponding to the thread ID (LWPID). After the priority of
the corresponding thread is adjusted, the scheduler 112 per-
forms scheduling of the corresponding thread based on the
adjusted priority.

In the above description, the “setpriority” function is used
for priority change. Alternatively, the “nice” or “renice” func-
tion may be used for priority change. Priority change using
the “setpriority,” “nice” or “renice” function is well known to
those skilled in the art, and a detailed description thereof is
omitted.

After changing the function related to thread scheduling in
the NPTL, different priorities can be assigned to multiple
threads created by one process as illustrated in Table 3.

TABLE 3

/*

*@Description:voluntary &
non-preemptive mode
*@thread variables(pthread_t thread[max])

*If you want to affect priority about each thread of the process in the
kernel 2.6 + NPTL,

*We recommend that you use SCHED_ OTHER policy based on
priority-based scheduling.

*And, If you need time slice(sharing) about threads, Use SCHED__ RR
Policy

*(Real-time Policy) with
pthread__attribute__setschedpolicy().
*/

struct sched__param schedp;

int priority=5; /* You have to input Priority Number of between —20
and 19. */

memset(&schedp, 0, sizeof(schedp));
schedp.sched_ priority=priority;
pthread_ setschedparam(pthread_self(),
&schedp)

enforced thread scheduling at

Same Priority using

SCHED_ OTHER,

10

15

20

40

45

50

55

60

o
o

//for self thread
pthread_ setschedparam(thread[i],
other thread

SCHED_ OTHER, &schedp) //for

Referring to Table 3 and FIG. 6, a brief description is given
of changing the priority of a thread with “pid” of “7992” by
means of the “renice” function.

After finding a thread ID in the kernel space using the hash
table 122, the processor 113 of the control unit 110 issues a
priority adjustment command “renice 8-p 79927, which then
changes the priority of the thread with “pid” of “7992” to “8’.
As described above, the priority of a thread may be dynami-
cally changed by means of the “pid” value of the thread. That
is, the priority of a user application or priorities of other
applications (or threads) being executed may be dynamically
changed so that the user application is processed first. The
“tgid” value of a thread indicates a process to which the thread
belongs. As illustrated in FIG. 6, multiple threads 2, 3 and 4
are threads constituting a process 1. A thread whose “tgid”
value is the same as the “pid” value may be a process.

According to the present invention, the method for improv-
ing application processing speed may be implemented as a
computer program and may be stored in various computer
readable storage media. The computer readable storage
media may store program instructions, data files, data struc-
tures and combinations thereof. The program instructions
may include customized instructions and existing general-
purpose instructions. The computer readable storage media
may include magnetic media such as a hard disk and floppy
disk, optical media such as a CD-ROM and DVD, magneto-
optical media such as a floptical disk, and memory devices
such as a ROM and RAM. The program instructions may
include machine codes produced by compilers and high-level
language codes executable through interpreters.

According to an aspect of the present invention, there are
provided a method and apparatus for improving application
processing speed in a digital device. Applications are classi-
fied into multiple groups according to their importance in
terms of processing time and response time, and different
scheduling priorities are applied to the individual groups.
Hence, the processor can be utilized in a more efficient way.
In other words, the processor is utilized more by an applica-
tion belonging to a group of a high priority and is utilized less
by an application belonging to a group of a low priority, so
that the application belonging to the high-priority group is
processed first. This can be used to increase processing speed
of an application directly related to the user.

In addition, when the user makes an execution request for
a specific application, the priority of the user requested appli-
cation may be raised or priorities of other applications being
executed are lowered so that the user requested application is
processed first with a reduced latency time. Hence, process-
ing speed of the user requested application can be increased.

Although various embodiments of the present invention for
increasing application processing speed in a digital device
have been described in detail herein, many variations and
modifications may be made without departing from the spirit
and scope of the present invention, as defined by the appended
claims.

What is claimed is:
1. A method for improving application processing speed in
a digital device, comprising:
detecting an execution request for an application;
identifying, for each thread of the application, a group to
which the thread belongs, among preset groups with

US 9,183,047 B2

11

different priorities, the preset groups being set to classify
the requested application based on a processing time and
a response time for the requested application; and

scheduling each thread of the requested application
according to the priority assigned to the identified group
of the thread, and executing the requested application
based on the scheduling result,

wherein the preset groups comprise:

an urgent task group corresponding to threads that inter-
act with a user via a display of a display unit of the
digital device and applications currently utilizing the
processo,

a normal task group corresponding to threads that are
maintained in an executable state until termination,

a service task group corresponding to threads that are
maintained as long as sufficient resources are avail-
able to process applications in the urgent task group
and normal task group, and

a background task group corresponding to threads that
are terminated when an application corresponding to
the urgent task group, the normal task group, and the
service task group requests usage of a processor.

2. The method of claim 1, further comprising assigning,
when a thread of the requested application is not yet assigned
to a group, the unassigned thread of the requested application
to one of the preset groups according to a preset rule.

3. The method of claim 2, wherein assigning the unas-
signed thread of the requested application to one group com-
prises:

examining a scheduling attribute of the unassigned thread

of the requested application; and

assigning, when the scheduling attribute is not set, the

unassigned thread of the requested application to a
default group, and assigning, when the scheduling
attribute is set, the unassigned thread of the requested
application to one of the preset groups according to the
scheduling attribute.

4. The method of claim 3, wherein assigning the unas-
signed thread of the requested application to one of the preset
groups according to the scheduling attribute comprises:

examining an importance of the processing time and the

response time for the unassigned thread of the requested
application based on the scheduling attribute; and

determining one group to which the unassigned thread of

the requested application belongs according to the
examination result.

5. The method of claim 2, wherein each thread of the
application is assigned to one group immediately before
execution and remains in the assigned group until termina-
tion.

6. A method for improving application processing speed in
a digital device, comprising:

checking, upon detection of an execution request for a user

application, whether other applications are being
executed;

changing, when other applications are being executed, pri-

orities of each thread of the other applications being
executed so that the user application is executed first,
and performing scheduling according to the changed
priorities; and

executing the user application and the other applications

based on the scheduling result,

wherein the user application is assigned to one of a plural-

ity of preset groups and priorities of other applications in
the one of the preset groups are changed within a range
of priorities designated for the one of the preset groups,

5

10

15

20

25

30

35

40

45

50

55

60

12

the preset groups being set to classity the user applica-
tion based on a processing time and a response time for
the user application, and
wherein the preset groups comprise:
an urgent task group corresponding to threads that inter-
act with a user via a display of a display unit of the
digital device and applications currently utilizing the
processot,

a normal task group corresponding to threads that are
maintained in an executable state until termination,

a service task group corresponding to threads that are
maintained as long as sufficient resources are avail-
able to process applications in the urgent task group
and normal task group, and

a background task group corresponding to threads that
are terminated when an application corresponding to
the urgent task group, the normal task group, and the
service task group requests usage of a processor.
7. The method of claim 6, wherein changing priorities of
the other applications comprises:
lowering priorities of the threads of the other applications;
and
suspending execution of the other applications until execu-
tion of the user application is completed.
8. The method of claim 6, further comprising restoring,
when execution of the user application is completed, the
original priorities of the threads of the other applications.
9. The method of claim 6, wherein changing priorities of
the threads of the other applications further comprises main-
taining the priority of a thread of an application having a
priority higher than or equal to a preset threshold, among
threads of the other applications, without change.
10. An apparatus for improving application processing
speed in a digital device, comprising:
a grouping unit, identifying, upon detection of an execution
request for an application, for each thread of the appli-
cation, a group to which the thread belongs, among
preset groups with different priorities, the preset groups
being set to classify the requested application based on a
processing time and a response time for the requested
application;
a scheduler, scheduling each thread of the requested appli-
cation according to the priority assigned to the identified
group of the thread; and
a processor, executing the requested application based on
the scheduling result produced by the scheduler,
wherein the preset groups comprise:
an urgent task group corresponding to threads that inter-
act with a user via a display of a display unit of the
digital device and applications currently utilizing the
processot,

a normal task group corresponding to threads that are
maintained in an executable state until termination,

a service task group corresponding to threads that are
maintained as long as sufficient resources are avail-
able to process applications in the urgent task group
and normal task group, and

a background task group corresponding to threads that
are terminated when an application corresponding to
the urgent task group, the normal task group, and the
service task group requests usage of the processor.

11. The apparatus of claim 10, wherein the grouping unit
assigns, when a thread of the requested application is not yet
assigned to a group, the unassigned thread of the requested
application to one of the preset groups according to a preset
rule.

US 9,183,047 B2

13

12. The apparatus of claim 11, wherein the grouping unit
examines a scheduling attribute of the unassigned thread of
the requested application, assigns, when the scheduling
attribute is not set, the requested application to a default
group, and assigns, when the scheduling attribute is set, the
unassigned thread of the requested application to one of the
preset groups according to the scheduling attribute.

13. The apparatus of claim 10, wherein the grouping unit
assigns each thread of an application to one group immedi-
ately before execution of the application and maintains the
group assignment until termination of the application.

14. An apparatus for improving application processing
speed in a digital device, comprising:

an input unit generating an execution request for a user

application; and

a control unit controlling a process of checking, upon

detection of an execution request for a user application
from the input unit, whether other applications are being
executed, changing, when other applications are being
executed, priorities of each thread of the other applica-
tions being executed so that the user application is
executed first, performing scheduling according to the
changed priorities, and executing the user application
and the other applications based on the scheduling
result,

wherein the control unit comprises a processor executing

the user application and the other applications based on
the scheduling result, and

wherein the user application is assigned to one of a plural-

ity of preset groups and priorities of other applications in
the one of the preset groups are changed within a range
of priorities designated for the one of the preset groups,

20

14

the preset groups being set to classity the user applica-
tion based on a processing time and a response time for
the user application

wherein the preset groups comprise:

an urgent task group corresponding to threads that inter-
act with a user via a display of a display unit of the
digital device and applications currently utilizing the
processor.

a normal task group corresponding to threads that are
maintained in an executable state until termination.

a service task group corresponding to threads that are
maintained as long as sufficient resources are avail-
able to process applications in the urgent task group
and normal task group, and

a background task group corresponding to threads that
are terminated when an application corresponding to
the urgent task group, the normal task group, and the
service task group requests usage of a processor.

15. The apparatus of claim 14, wherein the control unit
lowers priorities of the threads of the other applications, or
suspends execution of the other applications until execution
of the user application is completed.

16. The apparatus of claim 14, wherein the control unit
further comprises a scheduler performing scheduling based
on the changed priorities, and

wherein the processor executes applications according to a

schedule produced by the scheduler.

17. The apparatus of claim 14, wherein the control unit
restores, when execution of the user application is completed,
the original priorities of the threads of the other applications.

18. The apparatus of claim 14, wherein at least one of the
threads of the other applications has a priority higher than or
equal to that of a thread of the user application.

#* #* #* #* #*

